
MATLAB MATH

Cleve Moler
moler@mathworks.com
The MathWorks Inc.
24 Prime Park Way
Natick, MA 01760-1500 
USA



Copyright  1984 - 1997 by The MathWorks, Inc.

2MATLAB MATH

MATLAB MATH
Floating point numbers
Matrix factorizations
Ordinary differential equations
Zero finding
Fourier transforms
Random numbers
Sparse matrices
Symbolic computation



Copyright  1984 - 1997 by The MathWorks, Inc.

3MATLAB MATH

TAs

Penny Anderson
Mary Ann Branch



Copyright  1984 - 1997 by The MathWorks, Inc.

4MATLAB MATH

Important Note

These PowerPoint slides are NOT self contained.
Run MATLAB at the same time and enter anything 

you see in blue.
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Questions

Please interrupt and ask questions.

“People who ask dumb questions are doing 
a public service”

-- Prof. Marc Kac
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Floating Point Numbers
ANSI / IEEE Standard 754, double precision

x = ± (1+f )·2e

f = d1/2 + … + d52/252, dk = 0,1
-1022 <= e <= 1023

Roundoff: eps = 2-52 

Underflow: realmin = 2-1022

Overflow: realmax = (2-eps) ·21023
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Floating Point Numbers

>> format hex 

>> t = 1/10

= 10-1(1.0… )10

= 2-4(1.10011001100110011001… )2

≈ 2-4(1.999999999999a)16
t =

3fb999999999999a
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Floating Point Numbers
>> 1.0 - 0.8 - 0.2

>> x = [1.0 -0.8 -0.2]’

>> format long, x

>> sum(x)

>> format hex, x

>> X = sym(x,’e’)

>> sum(X)
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Exercise

First, do the following computation by hand.
Then, use MATLAB.  Why do the results differ?
Where are the roundoff errors?  
>> a = 4/3

>> b = a - 1

>> c = 3*b

>> e = 1 - c
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Test matrices

Magic squares magic(n)

Hilbert matrices hilb(n)

Pascal matrices pascal(n)

Random matrices rand(n), randn(n)

Higham’s gallery help gallery

help private/xxx
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Exercise
Choose some test matrices for later use.
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Matrix factorizations

Triangular
lu, chol

Orthogonal
qr

Eigenvalue
eig, qz

Singular value
svd
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Triangular factorization

A = LU
L permuted unit lower triangular
U upper triangular
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Triangular factorization

» A = test matrix
» [L,U] = lu(A)
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Exercise
Find the LU factorization of your test matrices.
Observe the structure of L and U.
Verify that LU is close to A.
>> [L,U] = lu(A)

>> L*U - A
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Cholesky factorization

If A is symmetric and positive definite
A = RT R
R upper triangular
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Cholesky factorization

» A = spd test matrix;

» R = chol(A);



Copyright  1984 - 1997 by The MathWorks, Inc.

18MATLAB MATH

Exercise
Find a symmetric, positive definite test matrix.
Compute its Cholesky factor.
Find a symmetric, indefinite test matrix.
Try to compute its Cholesky factor.

>> help chol

>> [R,p] = chol(A)
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Orthogonal factorization

A = QR
Q orthogonal
R upper triangular
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Orthogonal factorization

» A = rectangular test matrix
» [Q,R] = qr(A)
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Orthogonal factorization

Full QR

Economy-sized QR
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Exercise
Find the QR factorization of your test matrices.
Observe the structure of Q and R.
Verify that QR is close to A.
Verify that Q is close to orthogonal.
>> [Q,R] = qr(A)

>> Q*R - A

>> I = eye(size(A))

>> Q'*Q - I
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Backslash
Problem:

Solve Ax = b
MATLAB:

x = A\b

Algorithm:
Triangular A -- solve directly.
Square A -- use Cholesky or LU.
Rectangular A -- use QR (least squares).



Copyright  1984 - 1997 by The MathWorks, Inc.

24MATLAB MATH

Existence and uniqueness
Problem:

Solve Ax = b
Existence:

b is in the column space of A.
Uniqueness:

Ax = 0 has no nonzero solutions.
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Existence and uniqueness
Example: 1-by-1

Solve ax = b
Solution

x = a\b
What if b is zero?
What if a is zero?
What if both are zero?
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Moler’s rules

It’s very hard to compute things that don’t exist. 

It’s also hard to compute things that aren’t unique.
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Condition number
Problem:

Change A to A + δA.
How much does x = A\b change?

Answer (approximately):
||δx||/||x|| ≤ κ(A) ||δA||/||A||

κ(A) is the condition number of A.
Computed by cond(A)
Estimated by condest(A)
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Condition number
Rule of thumb:
A matrix is singular to working precision if

κ(A) > 1/eps ≈ 1015
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Exercise
Check out

A\b

cond(A)

condest(A)
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Eigenvalue decomposition

A = X Λ X -1

X eigenvectors
Λ diagonal, eigenvalues
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Eigenvalue decomposition

» A = test matrix
» [V,D] = eig(A)
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Exercise
Distribution of eigenvalues
>> format short e

>> e = eig(A)

>> plot(e,'o')

>> semilogy(abs(e),'o')
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Alternate Exercise 
Condition numbers of eigenvalues
>> help condeig

>> [V,D,s] = condeig(A)

>> cond(V)
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Singular Value Decomposition

A = U Σ V T

U orthogonal
Σ diagonal, singular values
V orthogonal
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Demonstration

>> eigshow

>> svdshow
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Eigenvalues vs. Singular values

Eigenvalues
A maps n-dimensional space onto itself
Try to diagonalize with one change of basis
Might be complex, even when A is real
Might not exist; Jordan Canonical Form
Analyze systems of o.d.e.’s
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Eigenvalues vs. Singular values
Singular values

A maps n-space onto m-space
Separate change of basis in domain and range
Always real when A is real
Always exists
Transforming matrices are orthogonal
Analyze systems of simultaneous linear eqns
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Eigenvalues vs. Singular values
If A is square, symmetric and positive 
definite, then the eigenvalue decomposition 
and the singular value decomposition are the 
same.
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Exercise
Compare
>> [X,D] = eig(A)

and
>> [U,S,V] = svd(A)

for various matrices, including
>> A = pascal(6)

>> A = gallery(3)

>> A = gallery(5)

>> A = rosser
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Ordinary Differential Equations

One step methods (Runge-Kutta)

Match Taylor series through specified order

Single fixed formula

Vary only step size

Several function evaluations per step

Minimal memory requirements
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Ordinary Differential Equations

Multistep methods (Predictor-corrector)

Polynomial approximations of various orders

Family of formulas

Vary order and step size each step

Fewer function evaluations per step

More memory required
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Ordinary Differential Equations
Explicit methods

Explicit formula for each component
Appropriate for nonstiff equations

Implicit methods
Solve system of simultaneous equations at 
each time step
Involves the Jacobian, ∂F/∂y
Appropriate for stiff equations
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Stiff problems
Solutions can change on a time scale that 

is very short compared to the interval of 
integration, but the solution of interest 
changes on a much longer time scale.

Practical definition:
ode45 uses too many time steps
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Ordinary Differential Equations

Modern methods

Estimate error

Compute appropriate step size

Provide interpolants which allow the solution 
to be computed anywhere

Provide zero finding and event handling
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Ordinary Differential Equations

Nonstiff
ode23

ode45

ode113

Stiff
ode23s

ode15s
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ODE Suite Methods
ode45 Dormand-Prince formula
(4,5) Runge-Kutta triple, order 5
ode23 Bogacki-Shampine formula
(2,3) Runge-Kutta triple, order 3
ode113 Adams-Bashforth-Moulton, PECE
based on ODE/STEP, INTRP, orders 1-13
ode15s Numerical Differentiation Formulas
NDF family of Klopfenstein-Shampine, orders 1-5 
ode23s modified Rosenbrock (2,3) triple
W-method of Shampine-Reichelt, order 2
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Time Step Selection

ode45, ode23, ode113

Choose steps small enough to resolve the 
fastest possible behavior

ode15s, ode23s

Choose steps just small enough to resolve 
the actual behavior
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Nonstiff ODE methods
The best choice is likely to be

ode45 for most problems

ode23 if you want less accuracy
or if  F(t,y)  is not smooth

ode113 if you want much more accuracy
or if  F(t,y)  is very expensive
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Stiff ODE methods
The best choice is likely to be

ode15s for most problems

ode23s if you want less accuracy
or if  F(t,y) is not smooth
or if  ∂F/∂y is very cheap
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Using the stiff solvers
You can use ode15s and ode23s exactly like 

the codes for non-stiff problems, since                  
∂F/∂y is generated numerically by default.

But you may be able to speed up the 
computation greatly:

vectorize the evaluation of  F(t,y)
provide the sparsity pattern of  ∂F/∂y
evaluation of  ∂F/∂y for large problems 
requires sparse matrix technology.
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Flame propagation example
y' = y2(1-y)
y(0) = 0.01
0 <= t <= 200

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0
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Exercise
Try different ode solvers.  Vary parameters.
» flame = inline('y.^2.*(1-y)','t','y')

» y0 = 1.e-4

» tspan = [0 2/y0]

» opts = odeset('reltol',1.e-5, ...

'abstol',1.e-4)

» ode23s(flame,tspan,y0,opts)

» zoom on
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Zero finding

Polynomials

roots

Nonlinear functions

fzero

Minimization

fmin
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Companion matrix

The roots of the polynomial of degree n
p(x) = xn + c1xn-1 + . . . + cn

are the eigenvalues of the n-by-n matrix

-c1 -c2 . . . -cn-1 -cn
1     0  . . .   0    0
0     1  . . .   0    0

.
.

0     0  . . .   1    0
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Polynomial roots

» dbtype roots

» dbstop 39 roots

» p = poly(1:5)

» roots(p)

39      r = [r;eig(a)];

K» a

K» dbcont
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Multiple roots

What are the roots of
(x - a)m = 0 ?

What are the roots of
(x - a)m = eps ?

» p = poly(ones(1,16))

» z = roots(p)

» plot(z,'o')

» axis equal
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Exercise

J. H. Wilkinson’s famous example
» p = poly(1:20)

» delta = 2^(-23)

» p(2) = -210 - delta

» z = roots(p)

» plot(z,'o')

Make delta small enough to get real roots.
Which roots are most sensitive?
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Zeros of scalar functions

fzero
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Fourier Transforms

Transform matrix

dftmtx

Fast Fourier Transform

fft, ifft, fft2, ifft2

Convolution

conv
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Finite Fourier Transform

» n = 8

» omega = exp(-2*pi*i/n)

» [k,j] = meshgrid(0:n-1)

» F = omega.^(k.*j)

» dftmtx(8)

» x = randn(n,1)

» F*x

» fft(x)
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Fast Finite Fourier Transform

» I = eye(n,n)

» P = I(:,[1:2:n 2:2:n])

» H = dftmtx(n/2)

» D = diag(omega.^(0:n/2-1))

Theorem:
» F == [H D*H; H -D*H]*P'
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Fast Finite Fourier Transform
function y = ffft(x)

%FFFT Fast Finite Fourier Transform.

%  FFFT(X) computes the same Fourier transform as FFT(X).

%  The code uses a recursive divide and conquer algorithm

%  for even order and matrix-vector multiplication for odd

%  order.  If length(X) is n*m where n is even and m is 
odd,

%  the computational complexity of this approach is

%    O(n*log(n))*O(m^2).

n = length(x);

omega = exp(-2*pi*i/n);
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Fast Finite Fourier Transform
if rem(n,2) == 0

% Recursive divide and conquer

k = (0:n/2-1)';

w = omega .^ k;

u = ffft(x(1:2:n-1));

v = w.*ffft(x(2:2:n));

y = [u+v; u-v];

else

% The Fourier matrix.

j = 0:n-1;

k = j';

F = omega .^ (k*j);

y = F*x;

end
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Random numbers

Uniform distribution

rand

Normal distribution

randn

Other distributions

help stats
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Sparse Matrices

Creating sparse matrices
sparse, spdiags

Linear equations
\, symrcm, symmmd, colmmd

Iterative methods
pcm, minres, bicgstab, …

Eigenvalues
eigs, svds
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Symbolic Computation

Computer algebra systems
Maple V, ...

Symbolic objects
sym, syms

Calculus example
Matrix example
Function calculator

funtool
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